Uniform Ergodicity of the Iterated Conditional SMC and Geometric Ergodicity of Particle Gibbs samplers

نویسندگان

  • CHRISTOPHE ANDRIEU
  • MATTI VIHOLA
چکیده

We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers [1]. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on a novel non-asymptotic analysis of the expectation of a standard normalizing constant estimate with respect to a “doubly conditional” SMC algorithm. In addition, our results for i-cSMC imply that the rate of convergence can be improved arbitrarily by increasing N , the number of particles in the algorithm, and that in the presence of mixing assumptions, the rate of convergence can be kept constant by increasing N linearly with the time horizon. We translate the sufficiency of the boundedness condition for i-cSMC into sufficient conditions for the particle Gibbs Markov chain to be geometrically ergodic and quantitative bounds on its geometric rate of convergence, which imply convergence of properties of the particle Gibbs Markov chain to those of its corresponding Gibbs sampler. These results complement recently discovered, and related, conditions for the particle marginal Metropolis–Hastings (PMMH) Markov chain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Monte Carlo as Approximate Sampling: bounds, adaptative resampling via -ESS, and an application to Particle Gibbs

Sequential Monte Carlo (SMC) algorithms were originally designed for estimating intractable conditional expectations within state-space models, but are now routinely used to generate approximate samples in the context of general-purpose Bayesian inference. In particular, SMC algorithms are often used as subroutines within larger Monte Carlo schemes, and in this context, the demands placed on SM...

متن کامل

Geometric Ergodicity of Gibbs Samplers

Due to a demand for reliable methods for exploring intractable probability distributions, the popularity of Markov chain Monte Carlo (MCMC) techniques continues to grow. In any MCMC analysis, the convergence rate of the associated Markov chain is of practical and theoretical importance. A geometrically ergodic chain converges to its target distribution at a geometric rate. In this dissertation,...

متن کامل

Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models

We consider two Bayesian hierarchical one-way random effects models and establish geometric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity, along with a moment condition, guarantees a central limit theorem for sample means and quantiles. In addition, it ensures the consistency of various methods for estimating the variance in the asymptotic normal distribution....

متن کامل

On the Geometric Ergodicity of Two-variable Gibbs Samplers

A Markov chain is geometrically ergodic if it converges to its invariant distribution at a geometric rate in total variation norm. We study geometric ergodicity of deterministic and random scan versions of the two-variable Gibbs sampler. We give a sufficient condition which simultaneously guarantees both versions are geometrically ergodic. We also develop a method for simultaneously establishin...

متن کامل

Geometric Ergodicity of Gibbs Samplers for Bayesian General Linear Mixed Models with Proper Priors

When a Bayesian version of the general linear mixed model is created by adopting a conditionally conjugate prior distribution, a simple block Gibbs sampler can be employed to explore the resulting intractable posterior density. In this article it is shown that, under mild conditions that nearly always hold in practice, the block Gibbs Markov chain is geometrically ergodic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015